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Representations of low-rank orthosymplectic superalgebras 
by superfield techniques 

R J Farmer and P D Jarvis 
Department of Physics, University of Tasmania, GPO Box 252 C, Hobart, Tasmania, 
Australia 7001 

Received 18 June 1982, in final form 17 September 1982 

Abstract. Representations of Lie superalgebras may be realised as functions (superfields) 
on graded manifolds (suitably chosen coset spaces). The technique is illustrated for 
OSp(1/2) and OSp(2/2) with a review of well known results, and applied in the cases of 
OSp(3/2) and OSp(4/2) to construct some classes of irreducible representations. 

1. Introduction and main results 

Following the realisation of the significance of supersymmetry in mathematics and 
physics (Corwin et a1 1975) and the classification of all simple superalgebras (see, for 
example, Kac 1977, Rittenberg 1978, Scheunert 1979 and references therein), a 
programme of investigating the representations of the (classical and exceptional) 
superalgebras has developed along several lines. As well as the general theory (Kac 
1978), there have been a number of case studies (for example, Corwin et al 1975, 
Scheunert et a1 1977, BednBi. and Sachl 1978, 1979, Marcu 1980a,b). Other 
approaches have been via graded Young diagrams (Dondi and Jarvis 1981, see also 
Jarvis and Green 1979, Green and Jarvis 1982), tensor products (Ne’eman and 
Sternberg 1980), tensor and supercharacter methods (Balantekin and Bars 1981a, b, 
1982) and using Gel’fand patterns (Sun and Han 1980, Han et a1 1980, Han 1981). 
In recent work Hurni and Morel (1981, 1982, see also Morel and Thierry-Mieg 1981) 
have applied general weight-space techniques (Kac 1978) to representations of superal- 
gebras in a general framework. Infinite-dimensional representations have been studied 
by Edwards (1980), Blank et a1 (1981) and Hughes (1981). 

Major current physical applications are in supersymmetry and supergravity (see, 
for example, Fayet and Ferrara 1977, van Nieuwenhuizen 1981); the superalgebras 
of concern here are, of course, not simple in general. These do arise in nuclear models 
of, for example, U(6/4) (Iachello 1980, Balantekin et a1 1981); similar supergroups 
have appeared in solutions to anomaly constraints (Banks et a1 1980). In the realm 
of internal supersymmetry following work on SU(2/1) for the electroweak model 
(Ne’eman 1979), and SU( 1/ 1) for free electromagnetism (Jarvis 1982), the supergroup 
SU(5/1) has been used as an internal classification group (Taylor 1979, Dondi and 
Jarvis 1980) extended to SU(5 + k / l )  for several generations (Ne’eman and Sternberg 
1980). Finally a space-time, but non-fermionic, supersymmetry seems to underly the 
BRS invariance of quantum gauge fields and their compensating ghost counterparts: 
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474 R J Farmer and P D Jarvis 

in one formulation (Delbourgo and Jarvis 1982) a type of dimensional reduction has 
been used with a space-time supergroup OSp(4/2). 

It is with such applications in mind that the present study of representations of 
low-rank superalgebras, specifically OSp(3/2) and OSp(4/2) (the cases OSp( 1/2) and 
OSp(2/2) are well known) is directed. The aim (partially achieved in this paper-see 
the summary below) has been to provide a tomprehensive list of finite-dimensional 
irreducible representations (both typical and atypical) of these superalgebras. This 
would complement other methods and extend the tensor and Young-diagram 
approaches by serving as a guide to the spinor representations and those representa- 
tions which cannot be decomposed. Finally, the cases discussed provide simple 
examples of graded manifolds: thus in the OSp(2/2) example (see § 2.2) the space 
chosen may be regarded as a 1 /2  graded version of the three-sphere. 

Our method is that of induced representations. For a supergroup G and subgroup 
H, with corresponding superalgebras Ce and X, representations of Ce are afforded by 
functions @ on G / H  taking their values in a representation space Y of X, Indeed if 
x, y,  z ,  . . . are a set of coset representatives of G / H  then for g E G the group action 
in an appropriate basis for V is 

(1) 
where y is the unique coset representative such that g x = yh- ' ,  h E H  and 6;  is the 
matrix representing h in the chosen basis for V.  

Specifically, we choose coset representatives of the form exp X (xX + eQ), where 
X and Q are generic even and odd elements of Ce/X To allow the exponential map 
to be defined (at least formally), 6 must be an a-number (anticommuting) parameter 
and x a c-number as usual. If now S is an odd element of Ce and 77 an a-number 
parameter then the group action on G / H  is infinitesimally 

( g o ) ,  (x 1 = if: @ b  ( Y )  

where K €2.  The particular basis chosen will dictate the precise form of 
f ( x ,  0 2 ) ,  g(x, e 2 ) ;  for appropriate 2 they may be restricted to polynomials of low 
degree, and may be obtained directly via the BCH formula. From (1) and (2) the 
corresponding differential representation will be 

s -+ 1 [ f ( x ,  e2)e a/ax +g(x, e') a l a e  - k ( x ,  elk] (3) 

where now K is the matrix of the infinitesimal generator K in the representation 
carried by V.  Often it will be possible to decompose X? as =EO+%+, where X+ is 
an ideal (invariant subalgebra, [ X ,  X+] c X+). Representations of X,, are then easily 
extended to 2 by taking them to be zero on X+. 

The action on superfields corresponding to (2) is given simply by 

s@(x, e)  = m ( x ,  e). 
The representation (with matrix elements obtainable by expanding in x and (poly- 
nomially) in @) is in general infinite-dimensional, but with a finite-dimensional factor 
related to the choice of Y. From Kac (1978), all irreducible representations can be 
obtained by choosing 2 as a Bore1 subalgebra and X,, a Cartan subalgebra (and V 
one-dimensional). In order to handle the algebra involved, however, we shall consider 
below a variety of other choices (generally larger) of X and finite-dimensional V. In 
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superfield terms, the finite-dimensional representations correspond to constrained 
superfields (Dondi and Jarvis 1981). 

The generators MAB = -[AB]MBA of OSp(m/n) satisfy the superalgebra (Jarvis 
and Green 1979) 

[MAN, M C D ]  = gBCMAD - [ A B  I~AcMBD - [CO ]gB&AC + [ A B  ][CO ]~A&BC (4) 
where 1 S A ,  B, . . . s m + n, g A B  = [AB]gBA is the orthosymplectic metric and the sign 
factors [ A B ] ,  [ C D ] ,  etc, are -1 if 1 S A  s m, m + 1 S B  S m + n or vice uersa, and +1  
otherwise. Conversion from the MAB basis to the canonical Cartan form (Kac 1978) 
is readily accomplished and is indicated below in specific examples. 

The well known cases of OSp(1/2) and OSp(2/2) are reviewed in § 2 below as an 
illustration of our method. The main new results come in §§ 3 and 4 with a discussion 
of OSp(3/2) and OSp(4/2) respectively. The classes of irreducible representations 
which emerge depend upon the little group X0. As pointed out above, the need to 
limit algebraic complexity prohibits the optimal choice of the maximal Abelian sub- 
group (where %’ is a Bore1 subalgebra: Kac 1978). The little groups for OSp(3/2) 
and OSp(4/2) are chosen as U( l )  x OSp(1/2) and U ( l )  X SU(2) x SU(2), with corres- 
ponding coset spaces of dimension 3 = 1/2 and 5 = 1/4, respectively. General induced 
representations (superfields of arbitrary spin) are constructed using spin projection 
operators, in the former case extended to matrices for arbitrary ‘superspin’ irreducible 
representations of OSp(1/2), derived in § 2 (see also appendices 1 and 2). 

In tables 1 and 3 are set out, for the irreducible representations of OSp(3/2) and 
OSp(4/2) emerging from our technique, the constituents with respect to O(3) x Sp(2) 
and O(4) x Sp(2), which are isomorphic to SU(2) X SU(2) and SU(2) x SU(2) x SU(2), 
respectively. They are in general typical (with even and odd dimensions the same). 
For particular choices of the representation labels, however, atypical representations 
may arise: for example, for OSp(3/2) the choice (L  = 1, M = 0) yields the fundamental 
5 = 3 x 1/1 x 2, while in the OSp(4/2) case the choice (L  = 1, M = N = 0) yields the 
adjoint 17 = (3 x 1 X 1 + 1 x 3 x 1 + 1 x 1 x 3)/2 X 2 X 2. The special cases for OSp(3/2) 
are in fact (L  = 2 M  + 1, M si), (L  = 1, M 5 0) and (L  3 1, M = 0) (see table 2 and 
§ 3). For OSp(4/2) the cases (L  = 2 N  + 1, M = 0, N) and (L  = 2 N  + 2, M = 0, N) are 
treated in § 4; from Kac (1978) more general atypicality conditions exist than these 
choices, but we have not worked out their general decompositions. 

Finally, the connection with Young diagrams has not been made explicit, although 
some cases are evident. For example, in OSp(3/2) the irreducible representations 
with M = 0 and L = 1,2 ,3 ,  . . . (dimensions 5,12,20, . . .4(2L - 1)) correspond to the 

Table 1. O(3) x Sp(2) = SU(2) x SU(2) decomposition of typical OSp(3/2) induced rep- 
resentations from little group U(1) x OSp(1/2) for L 3 3/2, M 3 0  (superfield components 
given in (17) and (19); see table 2 for special cases). 

‘Even’ Dimension ‘Odd’ Dimension 

‘ y L ,  M )  (2L + 1)(2M + 1) M - $1 (2L + 1)(2M) 
H ( L - 2 , M )  (2L - 3)(2M + 1)  h,(L - 2, M -4) (2L -3)(2M) 

(2L - 1)(2M) 
(2L - 1)(2M + 2) 

PO(L - 1, M )  (2L - 1)(2M + 1) 
(2L - 1)(2M - 1) 

$-(L  - 1, M - 4) 
$+(L - 1 ,  M +B - 1, M - 1 )  

Total 2(2L - 1)(4M + 1) Total 2(2L - 1)(4M+ 1 )  
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Table 2. O(3) x Sp(2) = SU(2) x SU(2) decompositions of OSp(3/2) induced representa- 
tions from little group U(1) x OSp(1/2) for special cases (atypical representations). 

( L  = 2M + 1, M a 1) invariant spacet 

P-*(2M, M - 1) (4M + 1)(2M - 1) $-(2M,M-5) (4M + 1)(2M) 
fi(2M - 1, M )  (4M - 1)(2M + 1) 6(2M- 1, M - 5 )  (4M - 1)(2M) 

Total 16M2-2 Total 16M' 
~~ ~~~ 

(L  = 2~ + 1, M a f) factor space 

A(2M+l ,M)  (2M + 1)(4M + 3)  a(2M + 1, M -;I (4M + 3)(2M) 
P0(2M, M )  (2M + 1)(4M + 1) ++(2M,M+;) (4M + 1)(2M + 2) 

Total 16(M + f)' Total 16(M + 4)' - 2 

( L  = 1, M a 0) invariant space 

A(1, M )  3(2M + 1) 
P-'(O, M - 1) l(2M-1) 

Total 8M+2 

cL'(O,M+5) 1(2M+2) 
a - ( l ,M- i )  3(2Mj 

Total 8 M + 2  

( L  a 1, M = 0) invariant space 

' y L ,  0 )  2L+1 
H(L-2,O) 2L-3 

Total 4L-2 

cL+K - 1, 9 2(2L - 1) 

4L-2 

t For M = f, f i  and 6- themselves form an invariant subspace (equivalent to the fundamental 5). 

Table 3. O(4) x Sp(2) = SU(2) x SU(2) x SU(2) decomposition of typical OSp(4/2) irreduc- 
ible representations from little group U(1) x SU(2) x SU(2) for L 23, M, N 2 0  (superfield 
components given in (21) and (23), see text for special cases). 

'Even' Dimension 'Odd' Dimension 

A, d ( L  - 1 * 1, M, N )  
F 0 ( L - 1 , M , N )  (2L- 1)(2M+1)(2N+l) (L-*(L-$,M-f,N*;) 2(2L)(2M)(2N+1) 

2(2L - 1)i2M+ 1)(2N+ 1) 

2(2L - 1)(2M + 1)(2N + 1) 

2(2L - 1)(2M + 1)(2N + 1) 

+"(L -i, M+;,  N k i )  2(2L)(2M+2)(2N+ 1) 

2(2L - 2)(2M+2)(2N+ 1) F*(L - 1, M *  1, N )  
dO(L - 1, M, N )  (2L-l)(2M+l)(2N+l) i - * ( L - & M - t , N + f )  2(2L-2)(2M)(2N+1) 

i + * ( L  -3, M + 5 ,  N * f )  

G*(L - 1, M, N *  1) 

Total 8(2L - 1)(2M + 1)(2N + 1) Total 8(2L - 1)(2M + 1)(2N+ 1) 

totally graded-symmetrical traceless tensors (where the 3 x 1 constituent of the funda- 
mental 5 is chosen to be even). Extensions of our techniques to cover these and other 
points are for future work. 

2. Illustrative examples: OSp(1/2) and OSp(2/2) 

To illustrate the techniques used to obtain the representations of OSp(3/2) and 
OSp(4/2) in 00 3 and 4 respectively, we consider here in some detail the method as 
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applied to the simpler cases of OSp(1/2) and OSp(212). More specifically we use 
OSp( 112) to demonstrate the procedure for finding finite;dimensiozal representations. 
The OSp(2 /2 )  case we use to introduce the matrices dUp and 9, (see appendix 2 )  
which are needed to find the general spin-M representations for OSp(312). 

2.1. OSp(l/2) 

The OSp( 112) superalgebra consists of the even generators MUD and the odd generators 
M I ,  where 1 sa, p s 2 .  If we call M I ,  = Q, and transform MUD to the spherical basis 
M+, M-  and M3 via Mu? = 2M ( u E ) , ~ ,  where (TI, u2, u3 are the Pauli matrices and 

= (-? A), or M+ = zM22, M- = -;Ml1 and M3 = &f12 we obtain the following 
superalgebra: 

with all other (anti)commutators zero. 
For the subalgebra X we choose X = (M3, M+, (22) with XO = {M3} = U(1). The 

cosets are labelled by the elements exp(xM- + eQ1) and the superfields are functions 
O(x, 0 )  carrying a charge A? = -M. Expanding the superfield in 6 we have simply 
O(X,  e)  = A ( X I  + e* (x  1. 

The differential representation of the generators (see (3)) is 

M- = a / a x  

M+ = -x' a l a x  - x e  alae + ~ X M  

M~ = - X  a l a x  -$e alae + M 

Q2 = -ex  a l a x  + X  a l a e  + 2 e ~ .  

= -e a / a x  + a l a e  

Acting on the superfield with the above set of generators we obtain the following 
variations for the component fields, writing A' = aA/ax, etc, 

M - :  SA=A' S* = 4' 
M,: SA = -x2A'- 2MxA 

M3: SA =-xA'-MA S* = -x* '  - $9 -M* 

Q1: SA=* S* = -A' 

S* = -x2* '  - x* - 2Mx* 

Q 2 :  SA=X* SI,!/ = -xA' - 2MA. 

We now expand A(x) and $ ( x )  as power series in x :  

(7) 

m m 

A(x)= 1 Anxn and * ( x ) =  1 f y X n .  
n =O n = O  
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Substituting for these into (7) and equating like powers of x, we obtain the results 

M-: 

M+: 

M3: SA" = - (n  -M)A"  84" = -(n +:-M)G" 

Q1: 

0 2 :  

SA" = ( n  + l )A"+ '  

SA" = -(n - 1 -2M)A"-', n z 1 

s$" = ( n  + 1 ) ~ " ' ~  

84" = - (n  - 2 ~ ) $ " - ' ,  n 3 1 

SA" = G", n s 2 M  - 1 

SA" = $"-', n 3 1 

SG" = -(n + 1)A"+' 

S$" = -(n -2M)A"-', n z 1 

with all other variations zero. 
If we take M half-integral, then it is clear from the explicit component form of 

the variations, (8), especially M+ and Q, that the infinite set {Ao, A', . . . ; $', $ I ,  . . .} 
; Sl,'", $ 2 M + 1 , .  . .}. If these has an infinite invariant subset { A  , A  , . . . 

components are set to zero, then the remaining finite subset 
{A', A', . . . , A ' ~ ;  G O ,  $ l , ,  . . , 

Thus an arbitrary finite-dimensional irreducible representation of OSp( 1 /2) has 
dimension 4M + 1 and 'superspin' M :  i.e. spins M and M - $  under Sp(2) (see, for 
example, Scheunert et ul 1977). The matrix elements acquire a more symmetrical 
form in the basis defined by B" = A'+M, X "  = *'IM-' or I* =-M, - M + l , .  . . , M  
a n d v = - M + & - M + F ,  . . . ,  M- '*  2 .  

2 M + l  2 M + 2  

is invariant (i.e. as a factor space). 

3 

M3 : SB" = -/AB" S X "  = -vx" 

M,, M - :  SB" = ( M +  1 T p ) B W T 1  SI)" = ( M  +iF v ) p  (9) 
Q1, Q2: SB" =xu* '  a x y  = -(vj-Mff)B"-t*l 

where B * ( M A 1 )  = *tM+f 1 = 
- X  -0. An alternative form for these matrices is given in 

appendix 2 in terms of spin projection operators (see, for example, (A6) and (A9)); 
it is in this form that they are required in the OSp(2/2) and OSp(3/2) cases. 

2.2. OSp(2/2) 

The OSp(2/2) superalgebra consists of the odd generators Qa, =Ma,, the O(2) gen- 
erator L = M 1 2  and the Sp(2) generators Map. Here 1 s u,  b s 2 refers to O(2) and 
1 sa, p s 2 refers to Sp(2). These generators satisfy the superalgebra 

with all other (anti)commutators zero. 
For the subalgebras X and X o  we choose X = X o  = {Map, Q l m }  = OSp(1/2). 

Although this is obviously not the simplest choice for XO, we nevertheless make this 
choice to demonstrate the use of the OSp(1/2) little group which arises also in the 
study of OSp(3/2). The cosets are labelled by the elements exp(xL+BaQ2,). 
Superfields are functions @'A(x, 0") and form a 'superspin' M representation of 
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OSp(1/2) as described above (see also (A6)): 

In the following work all spin-M indices will be suppressed. Expanding the superfield 
in 8 we obtain the general forms 

(,",) = ( , A , ) + e " ( " ; * ~ ) + ' B ' ( ~ )  

where O 2  = & , p O P f 3 P .  

ha, M - i. To decompose Pap into fields of definite spin we proceed as follows: 
The components have the following spins: A and H,  M ;  CL,', M + i ;  ILi, a, and 

1 
Pap = T(P,p - Ppa) + k L 3  + Po,) 

= $&,@E yapsy + P:p + P i ;  
where 

P y  = n:p"(P,, +Pa,) 

are the spin-M and spin-(M - 1) projections defined in appendix 1. Since epPp,  has 
spin M -i but IIiip Hits' = 0, there is no spin-(M + 1) projection. Furthermore, using 
(Al)  and (A5), 

&Yapa, = &YGPya/2(M + 1) =Iw6P0,a/2(M + 1). 

(2M + 1)P:p = M(P?  l a p  + ( M  + l)(P!),p 

(P2),p = (Pzp - &,&YSP:s/2M*) 

It should be noted that Pzp is not an eigenvector of rI:'8. We can, however, rewrite 
it as 

where 

M' C M  M - G - M - 1  

such that H,''P(P:)yp = ( P z ) y ,  and II,''p(P:)yp = 0. Thus finally we have in (11) 

(12) 1 Pap = (Po_),, + Pip. 

The differential representation of the generators (see (3)), writing a, =ala@", is 

where f(x)  = ( K  -x2)1'2andK isan undeterminedconstantt. dl, and.kap are matrices 
in the 'superspin' M representation of OSp(1/2) as discussed in appendix 2 (see (A7) 
and (A8)). 

+ In this case arbitrary powers of x arise from brackets such as [xL, [xL, . . . [xL, v Q ~ , ] .  . .!. Here 6 arises 
as an integration constant in the differential equations satisfied by f ( x ) .  We find that if and a,, are 
to enter MR0 and Q1, in the manner suggested by the action of the little group on the cosets, then they 
are not present in Qz, and L. 
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Examining first the action of L we find the following results for the variations of 
the components: 

SA = fA' Sa, = f a &  

a*,' =f*&" SP,; = fP&-,' 

a*: =f*&- SP:p = fP&op 

SH = f H ' +  f-'A' Sg,  = f h &  + f - ' a &  

To more readily extract the finite-dimensional representations (cf (7) and (8)), we 
replace H and h, by fi and 6, such that, under L, 

SA = f(Af + ex-'& and Si ,  = f ( l &  +dx-'L,) .  

We find that 
* 

(15) d 1-d I fi = X - e ~ + X 1 - e ~ '  and h , = x -  h ,+x  a, 

satisfy these criteria (with the choice d = e = 0, for example). Using (15), the variations 
of the component fields (1 1) under the action of, for example, the generator Q1, are 
(here [MI = (2M + 1)l") 

similar matrix elements are found for the remaining generators Q 2 ,  and Map. 
We shall not go on to extract the finite-dimensional representations (invariant 

factors) as OSp(2/2) has been treated in the literature under SU(2/1) (to which it is 
ismorphic) (see, for example, Scheunert et a1 1977, Marcu 1980a, b, and references 
therein). The above choice of basis was made mainly for purposes of illustration; a 
comprehensive superfield treatment of SU(2/1) and SU(n/ l )  has been given by Dondi 
and Jarvis (1981) in a more convenient basis. However, with the superfield techniques 
at hand, we now proceed in the next sections to examine the cases of OSp(3/2) and 
OSP(4/2). 

3. Osp (3/2) 

The OSp(3/2) superalgebra consists of the odd generators Q,, =Ma,, the O(3) gen- 
erators L a b  = M M a b  and the Sp(2) generators Map. Here 1 s a, b s 3 refer to O(3) and 
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1 sa, /3 s 2 refer to Sp(2). We recast these generators into the form 

Cosets are labelled by the elements exp(xL- + 6"Q-,) and superfields are functions 
O(x ,  6,) carrying charge i = -L, and a 'superspin' M representation of the U ( l )  x 
OSp(l j2)  little group. The superfield expanded in 6 takes the following form as 
described in 9 2 (cf (11) and (12 ) ) :  

The differential representation of the generators is from (3) (see also (13) and 
appendix 2 ) :  

L-  = ajax 

L+ = -x2 ajax - e 2  ajax - 2x6,  a, + ~ X L  - ~ ~ $ 3 ,  

L~ = -X ajax - 6" a, + L 

M,, = 6, a, + 6, a, -.A,@ 

Q+, = -26,x alax - x 2 e ,  + 2 e 2  a,+2ea~-2ePJIC*,, -2X&, 

Q 3 ,  = -8, ajax - x a, - g3,. 

Q-, = 8, 

As shown in 9 2 we examine the action of L ,  to obtain a modified basis for the 
component fields in which the finite-dimensional factor is most readily seen. The 
definitions of these component fields and their degrees (highest power of x in the 
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finite factor) are (where [MI = (2M + 1)''2): A ,  a,  2L; JI', $-, p:o and Pi;, 2L - 2 ;  
g, h: 2L - 4 ,  where 

6; = L [ M ] - ' ~ ,  + a &  

F:@ = -L[M]P:,  +$MapAI 
A = ( M  + l ) [ M ] - ' ( L  - l ) H  -$L--'[M]-'M"PP:& 

+[M]- 'L- ' (2L - l ) - ' (L  - 1)(M + 1)(L + 2M)A" 

L, = ( L  - l ) [M]- 'ha  + [MIL-'$&- + [M]-'L-'(2L - l ) - ' (L  - 1)(L - 2M - l ) ~ , " .  

From (18), taking into account the definitions (19) ,  the O(3) x Sp(2) --. 
SU(2) x SU(2) decompositions we obtain for arbitrary induced representations with 
the chosen little group (corresponding to superfields of arbitrary half-integer charge 
L and 'superspin' M )  are given in table 1 .  This class of irreducible representations 
is in general typical (with even and odd dimensions the same), and total dimension 
4(2L - 1)(4M + 1 )  with L 3 3 and M 0. In the basis (19) it is found that superfields 
which cannot be decomposed arise for certain (L,  M )  values, corresponding to atypical 
representations. With ( L  = 2M + 1 ,  M 3;) (cf Kac 1978) the set Pi ; ,  A, 4, and h', 
form an invariant subspace of dimension 32M2 - 2 = 16M2- 2 /16M2,  with the set 
A ,  F& a,  and 4: invariant as a factor space (for M = i, 6 and 6; form a further 
invariant subspace equivalent to the fundamental 5 ) .  From (19) it is also evident that 
L = 0, i and 1 are special cases; ( L  = 0, M = 0) is a singlet, but no finite-dimensional 
( L  = ;, M 0) superfield can be constructed; thirdly, the sequence ( L  = 1 ,  M 3 0), with 
invariant set A ,  P i o ,  4: and a, ,  includes the fundamental 5 = 3 x 1/1 x 2 for M = 0, 
and the adjoint 12 = (3 x 1 + 1 x 3)/3 x 2 for M = 1. The O(3)  x Sp(2) 2: SU(2) x SU(2) 
decompositions obtained for these cases are summarised in table 2. Finally, that there 
is some connection with the graded Young diagrams (Dondi and Jarvis 1981) is seen 
already from the fact that the series L = 1 , 2 , 3 ,  . . . with M = 0 (with dimensions 5, 
12, 20,. . .) correspond to the totally graded-symmetrical traceless tensors of rank L 
(where the 3 x 1 constituent of the fundamental 5 is chosen to be even). 

4. OSp (4/2) 

The OSp(4/2)  superalgebra can be cast in a more useful form as follows. Let 
0 s p ,  Y s 3 for the even indices and 1 s cy, p s 2  for the odd indices, and from ( 4 )  
define: 

L , . = - '  -@U 
ab 2((+ ) a b M ~ v  

Mab = $((+w")abMwv 

N a p  E M a p  

Qdaa = (+tMFa 

where 

t The same complex algebra results also from a Euclidean choice of metric. 
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These generators satisfy the superalgebra 

(Qriaa, Q d b p }  = -2EabEcidVup E a b E a A a b  + E a p E a b M a b  

[ M a b ,  M c d l =  E b c M a d  E a d M b c  + E a c M b d  + E b d M a c  (20) 

[ M a b ,  Q , c - y l =  EbcQcav E a c Q t b v  

and similarly for Ldb; and Nap, corresponding to the special case LY = 1 of the D(2 ,  1, CY) 
exceptional superalgebra (Kac 1978, Rittenberg 1978, Parker 1980). Corresponding 
to Ld6, generators L,, L-  and L 3  can be defined as in § 2 above. For the subalgebra 
,3f we choose 

,3f = (L3, M a b ,  Nap, L+, Q 2 a a )  

and 

Cosets are labelled by the elements exp(xL- + OaaQla,), and superfields are functions 
@(x, ea,) carrying a charge f = - L  and spins M x N  under the little group U(1)x  
SU(2) x SU(2): 

xo = (L3, Mat,, Nap} U( 1) X s u ( 2 )  X s u ( 2 ) .  

@(x, 6 )  = A(X) + O a a  c ($:: (x) + $':: ( X I ) +  ( 8 6 ) a b ( F : b  (x) + F : b  (x )) 

+iee)ao( G : ~  (x + 1 G:@ (x )) + ( e 3 ) a a  cu z (x)  + x :: (XI )  + e 4 0  ( X I  

(21) 
where the monomial basis for 8 expansions is 

(ee)ab =eaa& (ee)"O = eaaef  
(e31aa = (eeIabe; e4 = (e3)aaeaa 

and the summation is over all possible projections onto total spin M * f, N f f (for 
$,,(x)andxaa(x)),M* l , M + O a n d N *  1, N +O(forFab(x)andGap(x),respectively). 
The relevant projection operators and their properties are given in appendix 1. 
Working with the 8 algebra requires a calculus of products such as 

( 8 e ) a b e C Y  = - f E  bc (83)"' - 1 ac (e31by 

(ee)ab(ee)ys = o 
(ee)ab(ee)cd = & b c E a d  +EaCEbd)e4  

which can all be obtained by symmetry arguments. 
The differential representation (see (3)) writing aaa = a/aeaa is 

L- = a/ax 

L + = - ( x  -- ;e4) a/ax - (xe + e3)aa a,, + ~ X L  + i ( e e ) a b k a b  - (ee)apfi,, 
L~ = -(x a/ax +;eao, a,,)+L 
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As in the examples discussed in 0 2 ,  examination of the L ,  and Qj,, action shows 
that the finite-dimensional factor (polynomial in both x and e )  is most readily seen 
in terms of a modified basis of component fields whose definitions and degrees (highest 
power of x in the finite factor) are A,  2L;  IL"", 2L - 1; F", Fo,  G", Go, 2L - 2 ;  i"", 
2 L - 3 ; d , 2 L - 4 ;  where 

&, = Ftb  - f ia&' /4L 

G:o = G$ + f i a d ' / 2 L  

2"" =x"" + ( 3 + 2 M "  + 4 N n ) @ " " ' / 6 ( L - : )  

d = D +fiQbF0,b/12(L - 1) + f i a @ G : b / 6 ( L  - 1 )  

- [ 3 L + 2 M ( M +  1 ) - 8 N ( N  + 1 ) - 3 ] A " / 1 2 L ( L - $ ) ( L -  1) 

with m, n = and 2M'+ 1 = *(2M + l ) ,  etc (see appendix 1 for details of the projec- 
tion operators). 

From (22) ,  taking into account the definitions (23) ,  the O ( 4 )  x Sp(2) = 
SU(2) x SU(2) x SU(2) decompositions we obtain f x  arbitrary induced rpresentations 
with the chosen little group (corresponding to superfields of arbitrary half-integer 
charge L ,  and spins M and N )  are given in table 3 .  This class of irreducible 
representations is in general typical (with even and odd dimensions the same), and 
total dimension 16(2L - 1)(2M + 1)(2N + l ) ,  with L 3 4, M, N 2 0. In the basis (23)  
it is found that superfields which cannot be decomposed arise for certain (L ,  M, N )  
values, corresponding to atypical representations (cf Kac 1978). For example, in the 
case ( L  = 2N + 1 ,  M = 0, N 2$), the set &, fi and $+- form an invariant subspace 
of dimension 32N2 - 2 = 16N2 - 2 / 1 6 N 2 ;  on the other hand, with ( L  = 2N + 2, M = 0, 
N 2 0 )  the analogous set A,  G' and i,b++ are invariant as a factor space. From (23)  
it is also evident that L = 0, 3, 1 are special cases. For example, the sequence ( L  = 
1 ,  M = 0, N 2 0 )  with invariant set A,  F', G' and i,b", includes the adjoint 17 = 
(3 x 1 x 1 + 1 x 3 x 1 + 1 x 1 x 3)/(2 x 2 x 2)  for N = 0. From Kac (1978),  the general 
atypicality conditions are L =M'-  2N', L = M' - 2N', but we have not worked out 
the general decompositions. Likewise the connection with Young diagrams has not 
been made explicit, apart from special cases, for example that the ( L  = 1 ,  M = 0, 
N 2 0) sequence corresponds to rank-(2N + 2)  graded antisymmetrical tensors (see, 
for example, Dondi and Jarvis 1981). 
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Appendix 1. Projection operators for spin M x $ and spin M x 1 

As explained in § 2,  the two-index basis for SU(2) used there and in § §  3 and 4 is 
related to the spherical basis via 

f ie@ = 2(& * WE),@ 

where the matrices refer to a spin-M representation of an SU(2) little group. Where 
these act on superfield components such as 4, or P(,,,, the question arises of projections 
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onto total spins M f $, or M f 1 ,  M + 0 respectively. These are derived straightfor- 
wardly using the characteristic identity (quadratic or cubic, respectively) satisfied by 
the generators in the reducible M x f, M x 1 representations. 

For M x 5 we have (spin-M indices are suppressed and indices a, p, , . . are raised 
using the inverse metric E "@) 

A + ( 2 M * + 3 ) f i + ( M * + l ) ( M * + 2 )  
2(M* + 1)(2M* + 1) 

From these definitions, several useful identities can be derived which are necessary 
for the extraction of component field variations. Examples are 
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Appendix 2: Matrix representations of OSp(1/2) 

In §§ 2.2  and 3 the little groups chosen involve the supergroup OSp(1/2) with 
generators \Map: Q a }  as in § 2.1. The superfield technique requires explicit matrix 
elements {AaQ, g a }  of these generators acting on superfields of arbitrary 'superspin' 
M (§ 2.1), i.e. two-component superfields 

For the Sp(2) spin generators we take the matrices 

where (fia,)," are the matrix reprexentatives for spin M, and (fi&)$ correspond to 
the reducible M X $ representation: 

(A?:&: = s; + E y e  s; + E Y ,  8:. 

rI;: Sd(fix a ,  )Eed Sd eE = (fi:p);:(n-:)%5ea 

That this choice is appropriate is guaranteed by the fact that the spin M f + projectors 
commute with the fii,, so 

E ( f i t 0  ) dy:ddS 

because daa has spin M - 1. 
From the anticommutation relations we require matrices (ga)E which satisfy 

($a )E($o)E + ( Jo )E($a )g  = -(&,,)E 
and we find (here [MI = (2M + 1)"') 

When working with $, we must be careful to ensure 
a-numbers, though from the form (A8) this is not explicit. 
and (de)? on the superfield @D is 

and 
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